初一下册数学知识点:数据的收集、整理与描述

首页 > 

中考

 > 初一下册数学知识点:...

初一下册数学知识点:数据的收集、整理与描述(图)

数据的收集、整理与描述是初一下学期学习的最后一章,本篇知识点总结了关于数据的收集、整理与描述的知识结构图、有关基础统计学的知识定义和经典例题参考。通过实际参与收集、整理、描述和分析数据的活动,经历统计的一般过程,感受统计在生活和生产中的作用,增强学习统计的兴趣,初步建立统计的观念,培养重视调查研究的良好习惯和科学态度。

初一下册数学知识点:数据的收集、整理与描述

第十章 数据的收集、整理与描述

一、目标与要求

1.了解全面调查的概念;会设计简单的调查问卷,收集数据;掌握划记法,会用表格整理数据;会画扇形统计图,能用统计图描述数据;经历统计调查的一般过程,体验统计与生活的关系。

2.经历数据的收集、整理和分析的模拟过程,了解抽样调查、样本、个体与总体等统计概念;学会从样本中分析、归纳出较为正确的结论,增强用统计方法解决问题的意识。

3.理解频数、频数分布的意义,学会制作频数分布表;学会画频数分布直方图和频数折线图。

二、重点

学会画频数分布直方图;

分层抽样的方法和样本的分析、归纳;

抽样调查、样本、总体等概念以及用样本估计总体的思想;

全面调查的过程(数据的收集、整理、描述)。

三、难点

绘制扇形统计图;

样本的抽取;

分层抽样方案的制定;

确定组距和组数。

四、知识框架

初一下册数学知识点:数据的收集、整理与描述1

五、知识点、概念总结

1.数据的整理:我们利用划记法整理数据,如下图所示,

初一下册数学知识点:数据的收集、整理与描述2

2.数据的描述:为了更直观地看出上表中的信息,我们还可以用条形统计图和扇形统计图来描述数据。如下图所示:

初一下册数学知识点:数据的收集、整理与描述3

3.全面调查:考察全体对象的调查方式叫做全面调查。

4.抽样调查:抽样调查是,一种非全面调查,它是从全部调查研究对象中,抽选一部分单位进行调查,并据以对全部调查研究对象作出估计和推断的一种调查方法。显然,抽样调查虽然是非全面调查,但它的目的却在于取得反映总体情况的信息资料,因而,也可起到全面调查的作用。

5.抽样调查分类:根据抽选样本的方法,抽样调查可以分为概率抽样和非概率抽样两类。

概率抽样是按照概率论和数理统计的原理从调查研究的总体中,根据随机原则来抽选样本,并从数量上对总体的某些特征作出估计推断,对推断出可能出现的误差可以从概率意义上加以控制。习惯上将概率抽样称为抽样调查。

6.总体:要考察的全体对象称为总体。

7.个体:组成总体的每一个考察对象称为个体。

8.样本:被抽取的所有个体组成一个样本。为了使样本能够正确反映总体情况,对总体要有明确的规定;总体内所有观察单位必须是同质的;在抽取样本的过程中,必须遵守随机化原则;样本的观察单位还要有足够的数量。又称“子样”。按照一定的抽样规则从总体中取出的一部分个体。

9.样本容量:样本中个体的数目称为样本容量。

10.频数:一般地,我们称落在不同小组中的数据个数为该组的频数。也称次数。在一组依大小顺序排列的测量值中,当按一定的组距将其分组时出现在各组内的测量值的数目,即落在各类别(分组)中的数据个数。

如有一组测量数据,数据的总个数N=148最小的测量值Xmin=0.03,最大的测量值Xmax=31.67,按组距为△x=3.000将148个数据分为11组,其中分布在15.05~18.05范围内的数据有26个,则称该数据组的频数为26.

11.频率:频数与数据总数的比为频率。在相同的条件下,进行了n次试验,在这n次试验中,事件A发生的次数n(A)称为事件A发生的频数。比值n(A)/n称为事件A发生的频率,并记为fn(A).用文字表示定义为:每个对象出现的次数与总次数的比值是频率。

(1)当重复试验的次数n逐渐增大时,频率fn(A)呈现出稳定性,逐渐稳定于某个常数,这个常数就是事件A的概率.这种“频率稳定性”也就是通常所说的统计规律性。

(2)频率不等同于概率.由伯努利大数定理,当n趋向于无穷大的时候,频率fn(A)在一定意义下接近于概率P(A).频率公式:频数总体数量=频率

12.组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数,每一组两个端点的差叫做组距。

13.频数分布直方图

初一下册数学知识点:数据的收集、整理与描述4

初一下册数学知识点:数据的收集、整理与描述5

14.列频数分布表的注意事项

运用频数分布直方图进行数据分析的时候,一般先列出它的分布表,其中有几个常用的公式:各组频数之和等于抽样数据总数;各组频率之和等于1;数据总数×各组的频率=相应组的频数。

画频数分布直方图的目的,是为了将频数分布表中的结果直观、形象地表示出来,其中组距、组数起关键作用,分组过少,数据就非常集中;分组过多,数据就非常分散,这就掩盖了分布的特征,当数据在100以内时,一般分5~12组。

15.直方图的特点

通过长方形的高代表对应组的频数与组距的比(因为比是一个常数,为了画图和看图方便,通常直接用高表示频数),这样的统计图称为频数分布直方图。

它能:①清楚显示各组频数分布情况;②易于显示各组之间频数的差别。

16.制作频数分布直方图的步骤

(1)找出所有数据中的最大值和最小值,并算出它们的差。

(2)决定组距和组数。

(3)确定分点。

(4)列出频数分布表。

(5)画频数分布直方图。

三、经典例题

例1 某班有50人,其中三好学生10人,优秀学生干部5人,在扇形统计图上表示三好学生和优秀学生干部人数的圆心角分别是( )

A.720,360 B.1000,500 C.1200,600 D.800,400

例2某音乐行出售三种音乐CD ,即古典音乐、流行音乐、民族音乐,为了表示这三种音乐唱片的销售量的百分比,应该用( )

A.扇形统计图 B.折线统计图 C.条形统计图 D.以上都可以

例3在一次抽样调查中收集了一些数据,对数据进行分组,绘制了下面的频数分布表:

初一下册数学知识点:数据的收集、整理与描述6

⑴已知最后一组(89.5-99.5)出现的频率为15%,则这一次抽样调查的容量是________ .

⑵第三小组(69.5~79.5)的频数是_______,频率是________.

初一下册数学知识点:数据的收集、整理与描述7

例4如图,是一位护士统计一位病人的体温变化图:根据统计图回答下列问题:

⑴病人的最高体温是达多少?

⑵什么时间体温升得最快?

例5在一次抽样调查中收集了一些数据,对数据进行分组,绘制了下面的频数分布表:

初一下册数学知识点:数据的收集、整理与描述6

⑴已知最后一组(89.5~99.5)出现的频率为15 %,则这一次抽样调查的容量是________ .

⑵第三小组(69.5~79.5)的频数是_______,频率是________.

更多精彩资讯请关注查字典资讯网,我们将持续为您更新最新资讯!

查看全部

推荐文章

猜你喜欢

附近的人在看

推荐阅读

拓展阅读

相关资讯

最新资讯

网友关注