NewsContent"
数学运算上
(注意运算不要算错,看错!!!越简单的题,越要小心陷阱) 一.排列组合问题 1.能不用排列组合尽量不用。用分步分类,避免错误 2.分类处理方法,排除法。 例:要从三男两女中安排两人周日值班,至少有一名女职员参加,有(C1/2 *C1/3 +1)种不同的排法? 析:当只有一名女职员参加时,C1/2* C1/3; 当有两名女职员参加时,有1种 3.特殊位置先排 例:某单位安排五位工作人员在星期一至星期五值班,每人一天且不重复。若甲乙两人都不能安排星期五值班,则不同的排班方法共有(3 * P4/4) 析:先安排星期五,后其它。 4. 相同元素的分配(如名额等,每个组至少一个),隔板法。 例:把12个小球放到编号不同的8个盒子里,每个盒子里至少有一个小球,共有(C7/11)种方法。 析:0 0 0 0 0 0 0 0 0 0 0 0 ,共有12-1个空,用8-1个隔板插入,一种插板方法对应一种分配方案,共有C7/11种,即所求。 注意:如果小球也有编号,则不能用隔板法。 5. 相离问题(互不相邻)用插空法 例:7人排成一排,甲、乙、丙3人互不相邻,有多少种排法? 析: 0 0 0 0 ,分两步。第一步,排其它四个人的位置,四个0代表其它四个人的位置,有P4/4种。第二步,甲乙丙只能分别出现在不同的 上,有P3/5种,则P4/4 * P3/5即所求。 例:在一张节目表中原有8个节目,若保持原有的相对顺序不变,再增加三个节目,求共有多少种安排方法? 析:思路一,用二次插空法。先放置8个节目,有9个空位,先插一个节目有9种方法,现在有10个空位,再插一个节目有10种方法,现有11种空位,再插一种为11种方法。则共有方法9*10*11。 思路二,可以这么考虑,在11个节目中把三个节目排定后,剩下的8个位置就不用排了,因为8个位置是固定的。因此共有方法P3/11 6. 相邻问题用捆绑法 例:7人排成一排,甲、乙、丙3人必须相邻,有多少种排法? 析:把甲、乙、丙看作整体X。第一步,其它四个元素和X元素组成的数列,排列有P5/5种;第二步,再排X元素,有P3/3种。则排法是P5/5 * P3/3种。 7. 定序问题用除法 例:有1、2、3,...,9九个数字,可组成多少个没有重复数字,且百位数字大于十位数字,十位数字大于个位数字的5位数? 析:思路一:1-9,组成5位数有P5/9。假设后三位元素是(A和B和C,不分次序,ABC任取)时(其中B>C>A),则这三位是排定的。假设B、C、A这个顺序,五位数有X种排法,那么其它的P3/3-1个顺序,都有X种排法。则X*(P3/3-1+1)=P5/9,即X=P5/9 / P3/3 思路二:分步。第一步,选前两位,有P2/9种可能性。第二步,选后三位。因为后三位只要数字选定,就只有一种排序,选定方式有C3/7种。即后三位有C3/7种可能性。则答案为P2/9 * C3/7 8. 平均分组 例:有6本不同的书,分给甲、乙、丙三人,每人两本。有多少种不同的分法? 析:分三步,先从6本书中取2本给一个人,再从剩下的4本中取2本给另一个人,剩下的2本给最后一人,共C2/6* C2/4 * C2/2 例:有6本不同的书,分成三份,每份两本。有多少种不同的分法? 析:分成三份,不区分顺序,是无序的,即方案(AB,CD,EF)和方案(AB,EF,CD)等是一样的。前面的在(C2/6* C2/4 * C2/2)个方案中,每一种分法,其重复的次数有P3/3种。则分法有,(C2/6* C2/4 * C2/2) / P3/3 种分法。 二.日期问题 1.闰年,2月是29天。平年,28天。
判定公历闰年遵循的一般规律为: 四年一闰,百年不闰,四百年再闰.
公历闰年的精确计算方法:(按一回归年365天5小时48分45.5秒)
①、普通年能被4整除而不能被100整除的为闰年。(如2004年就是闰年,1900年不是闰年)
②、世纪年能被400整除而不能被3200整除的为闰年。(如2000年是闰年,3200年不是闰年)
③、对于数值很大的年份能整除3200,但同时又能整除172800则又是闰年.(如172800年是闰年,86400年不是闰年)
公元前闰年规则如下:
1,非整百年:年数除4余数为1是闰年,即公元前1、5、9……年;
2,整百年:年数除400余数为1是闰年,年数除3200余数为1,不是闰年,年数除172800余1又为闰年,即公元前401、801……年。
NewsContent"2.口诀: 平年加1,闰年加2;(由平年365天/7=52余1得出)。 例:2002年 9月1号是星期日 2008年9月1号是星期几? 因为从2002到2008一共有6年,其中有4个平年,2个闰年,求星期,则: 4X1+2X2=8,此即在星期日的基础上加8,即加1,第二天。 例:2004年2月28日是星期六,那么2008年2月28日是星期几? 4+1=5,即是过5天,为星期四。(08年2 月29日没到)(似乎错了2004也是闰年)三.集合问题 1.两交集通解公式(有两项) 公式为:满足条件一的个数+满足条件二的个数-两者都满足的个数=总个数-两者都不满足的个数。即:A+B=A∪B-A∩B
其中满足条件一的个数是指 只满足条件一不满足条件二的个数 加上 两条件都满足的个数 公式可以画图得出 例:有62名学生,会击剑的有11人,会游泳的有56人,两种都不会用的有4人,问两种都会的学生有多少人? 思路一:两种都会+只会击剑不会游泳+只会游泳不会击剑=62-4 设都会的为T,11-T+56-T+T=58,求得T=9 思路二:套公式,11+56-T=62-4,求得T=9 例:对某小区432户居民调查汽车与摩托车的拥有情况,其中有汽车的共27户,有摩托车的共108户,两种都没有的共305户,那么既有汽车又有摩托车的有多少户? 析:套用公式27+108-T=432-305 得T=8 2.三交集公式(有三项)
A+B+C=A∪B∪C+A∩B+B∩C+A∩C-A∩B∩C
例:学校教导处对100名同学进行调查,结果有58人喜欢看球赛,有38人喜欢看戏剧,有52人喜欢看电影。另外还知道,既喜欢看球赛又喜欢看戏剧(但不喜欢看电影)的有6人,既喜欢看电影又喜欢看戏剧(但不喜欢看球赛)的有4人,三种都喜欢的有12人,则只喜欢看电影的人有多少人?
更多精彩资讯请关注查字典资讯网,我们将持续为您更新最新资讯!