2012年安徽特岗教师招聘小学数学模拟试题答案

首页 > 

公务员

 > 安徽

 > 2012年安徽特岗教...

2012年安徽特岗教师招聘小学数学模拟试题答案

一、填空题

1.1023456789102346[解析] 越小的数字放在越靠左的数位上得到的数字越小,但零不能放在最左边的首数位上。故可得最小的十位数为1023456789,四舍五入到万位为102346万。

2.6π9π平方厘米[解析] 正方形中剪一个最大的圆,即为该正方形的内切圆。故半径r=12×6=3(厘米),所以它的周长为2πr=2π×3=6π(厘米),面积为πr2=π×32=9π(厘米2)。

3.1710[解析] 由题干知△+2□=44(1)

3△+2□=64(2),(2)-(1)得2△=20,则△=10,从而2□=44-10,解得□=17。

4.60分钟[解析] 由题干可知,本题的实质是求20与15的最小公倍数。因为20=2×2×5,15=3×5,所以它们的最小公倍数为2×2×3×5=60。即再遇到同时发车至少再过60分钟。

5.21[解析] 设分母应增加x,则2+67+x=27,即:2x+14=56,解得x=21。

6.1199[解析] 略

7.y=1[解析] 与x轴平行的直线的斜率为0,又在y轴上的截距为1,由直线方程的斜截式可得,该直线的方程为y=1。

8.-1[解析] 间断点即为不连续点,显然为x+1=0时,即x=-1。

9.12[解析] 由f(x)=x可知,f′(x)=(x)′=(x12)′=12x-12=12x,故f′(1)=12×1=12。

10.1[解析] 因为f′(x)=3x2≥0,所以f(x)在定义域R上单调递增,所以在[-1,1]上也递增,故最大值在x=1处取得,即为f(1)=1。

二、选择题

1.C[解析] 2能被2整除,但它为质数,故A错误。4能被2整除,但4是合数而不是质数,故B错误。奇数都不能被2整除,能被2整除的数都为偶数。

2C[解析] 长方形有两条对称轴,A排除。等边三角形有三条对称轴,B排除。圆有无数条对称轴,D排除。等腰三角形只有一条对称轴,即为底边上的中线(底边上的高或顶角平分线)。

3.B[解析] 盐水有5+75=80(克),故盐占盐水的580=116。

4.C[解析] 由2a3+326=5b9可得,a+2=b,又5b9能被9整除,可知b=4,则a=2,所以a+b=2+4=6。

5.B[解析] 如果是自然堆码,最多的情况是:每相邻的下一层比它的上一层多1根,即构成了以5为首项,1为公差的等差数列,故可知21为第17项,从而这堆钢管最多能堆(5+21)×172=221(根)。

6.C[解析] 棱柱的一个侧面是矩形/ 棱柱的侧棱垂直于底面,而棱柱为直棱柱棱柱的侧棱垂直于底面棱柱的侧面为矩形。故为必要但不充分条件。

7.A[解析] 13为分数但不是有限小数,B排除。同样13也是真分数,但也不是有限小数,排除C。43是假分数,也不是有限小数,D排除。故选A。

8.C[解析] 对f(x)=xln(2-x)+3x2-2limx→1f(x)两边同时取极限为:limx→1f(x)=0+3-2limx→1f(x),即3limx→1f(x)=3,故limx→1f(x)=1。故选C。

9.B[解析] 由曲线过点(1,-3)排除A、C项。由此曲线过点(2,11)排除D,故选B。y=2x3-5显然过点(1,-3)和(2,11),且它在(x,y)处的切线斜率为6x2,显然满足与x2成正比。

10. B[解析] 由A与B为互不相容事件可知,A∩B=,即P(AB)=0且P(A+B)=P(A∪B)=P(A)+P(B)。故选B。

三、解答题

1.解:[112+(3.6-115)÷117]÷0.8

=[32+(335-115)÷87]÷45

=(32+125×78)÷45

=(32+2110)÷45

=185×54

=92。

2.解:设全年级总人数为x人,则

x·48%+4x=52%

解得:x=100

所以没有参加课外活动的人数为100×(1-52%)=48(人)。

3.解:∫x1+xdx=∫x+1-1x+1dx=∫ dx-∫1x+1dx=x-ln|x+1|+C(C为常数)。

4.解:(1)zx=2xex+y+x2ex+y=(x2+2x)ex+y;

(2)zy=x2ex+y;

(3)dz=zxdx+zydy=(x2+2x)ex+ydx+x2ex+ydy。

四、分析题

参考答案:成因:没有理解整除的概念,对于数的整除是指如果一个整数a,除以一个自然数b,得到一个整数商c,而且没有余数,那么叫做a能被b整除或b能整除a。概念要求除数应为自然数,0.4是小数。而且混淆了整除与除尽两个概念。故错误。

预防措施:在讲整除概念时,应让学生清楚被除数、除数和商所要求数字满足的条件。即被除数应为整数,除数应为自然数,商应为整数。并且讲清整除与除尽的不同。

五、简答题

参考答案:小学数学概念的形成过程主要包括(1)概念的引入;(2)概念的形成;(3)概念的运用。

例如:对于“乘法分配律”的讲解:

(1)概念的引入:根据已经学过的乘法交换律,只是对于乘法的定律,在计算时,很多时候会遇到乘法和加法相结合的式子,如(21+14)×3。

(2)概念的形成:通过让学生计算,归纳发现乘法分配律。

比较大小:①(32+11)×532×5+11×5

②(26+17)×226×2+17×2

学生通过计算后很容易发现每组中左右两个算式的结果相等,再引导学生观察分析,可以看出左边算式是两个数的和与一个数相乘,右边算式是两个加数分别与这个数相乘,再把两个积相加。虽然两个算式不同,但结果相同。然后就可以引导学生归纳总结出“乘法分配律”,即(a+b)×c=a×c+b×c。

(3)概念的运用:通过运用概念达到掌握此概念的目的。

计算下题:①(35+12)×10

②(25+12.5)×8

学生通过运用所学的乘法分配律会很快得到结果,比先算括号里两个数的和再乘外面的数要快的多,从而学生在以后的计算中会想到运用乘法分配律,也就掌握了概念。

六、案例题

1. 参考答案:分析建议:张教师主要用了抽象与概括的思想方法;李老师用了教学模型的方法,先从实际问题中抽象出数学模型,然后通过逻辑推理得出模型的解,最后用这一模型解决实际问题。教师可从这方面加以论述。

更多精彩资讯请关注查字典资讯网,我们将持续为您更新最新资讯!

查看全部

推荐文章

猜你喜欢

附近的人在看

推荐阅读

拓展阅读

相关资讯

最新资讯

网友关注