初三学习的知识是初中三年学习的汇总,为了方便大家更好地复习,整理了初三数学关于分式的知识点,希望对大家的学习有所帮助。
四、分式的约分
1.定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。
2.步骤:把分式分子分母因式分解,然后约去分子与分母的公因。
3.注意:①分式的分子与分母均为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约去分子分母相同因式的最低次幂。
②分子分母若为多项式,先对分子分母进行因式分解,再约分。
4.最简分式的定义:一个分式的分子与分母没有公因式时,叫做最简分式。
◆约分时。分子分母公因式的确定方法:
1)系数取分子、分母系数的最大公约数作为公因式的系数.
2)取各个公因式的最低次幂作为公因式的因式.
3)如果分子、分母是多项式,则应先把分子、分母分解因式,然后判断公因式.
五、分式的通分
1.定义:把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。
(依据:分式的基本性质!)
2.最简公分母:取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。
◆通分时,最简公分母的确定方法:
1.系数取各个分母系数的最小公倍数作为最简公分母的系数.
2.取各个公因式的最高次幂作为最简公分母的因式.
3.如果分母是多项式,则应先把每个分母分解因式,然后判断最简公分母.
八、分式方程的解的步骤:
⑴去分母,把方程两边同乘以各分母的最简公分母。(产生增根的过程)
⑵解整式方程,得到整式方程的解。
⑶检验,把所得的整式方程的解代入最简公分母中:
如果最简公分母为0,则原方程无解,这个未知数的值是原方程的增根;如果最简公分母不为0,则是原方程的解。
产生增根的条件是:①是得到的整式方程的解;②代入最简公分母后值为0。
九、列分式方程——基本步骤:
① 审—仔细审题,找出等量关系。
② 设—合理设未知数。
③ 列—根据等量关系列出方程(组)。
④ 解—解出方程(组)。注意检验
⑤ 答—答题。
更多精彩资讯请关注查字典资讯网,我们将持续为您更新最新资讯!